Απεικονίσεις Yang-Baxter, δομή Poisson και ολοκληρωσιμότητα

Περίληψη

Σκοπός της παρούσας διατριβής είναι η κατασκευή και μελέτη συνολοθεωρητικών λύσεων της κβαντικής εξίσωσης Yang-Baxter (απεικονίσεις Yang-Baxter) και η συσχέτισή τους με την ολοκληρωσιμότητα διακριτών δυναμικών συστημάτων. Οι κατασκευές απεικονίσεων Yang-Baxter που προτείνονται προέρχονται από την αναπαραγοντοποίηση ισχυρών ζευγών Lax εξαρτώμενων από μια φασματική παράμετρο. Οι αντίστοιχοι πίνακες Lax προκύπτουν από την συμπλεκτική εμφύλλωση διωνυμικών πινάκων εφοδιασμένων με μια κατάλληλη δομή Poisson (αγκύλη Sklyanin). Στην περίπτωση των 2x2 πινάκων Lax, οι αντίστοιχες απεικονίσεις είναι συμπλεκτικές, τετράρητες και ταξινομούνται με βάση τον μεγιστοβάθμιο όρο του πίνακα Lax ως προς την ισοδυναμία απεικονίσεων Yang-Baxter. Εκφυλισμένες απεικονίσεις Yang-Baxter, οι οποίες σχετίζονται με γνωστές ολοκληρώσιμες εξισώσεις, προκύπτουν από όρια των τετράρητων (μη-εκφυλισμένων). Η σύνδεση μεταξύ απεικονίσεων Yang-Baxter και ολοκληρωσιμότητας επιτυγχάνεται θεωρώντας περιοδικά προβλήματα αρχικών ...
περισσότερα

Περίληψη σε άλλη γλώσσα

The purpose of this thesis is the construction and the study of set theoretical solutions of the quantum Yang-Baxter equation (Yang-Baxter maps) and the connection with the integrability of discrete integrable systems. The constructions that we present are derived from the re-factorization of strong Lax pairs depending on a spectral parameter. The corresponding Lax matrices are obtained from the symplectic foliation of binomial matrices equipped with an appropriate Poisson bracket (Sklyanin bracket). In the case of 2x2 binomial Lax matrices, the corresponding maps are symplectic, quadrirational and can be classified with respect to the Yang-Baxter equivalence. Degenerate Yang-baxter maps constructed as limits of the quadrirational maps, are connected to known integrable equations. The connection between Yang-Baxter maps and integrability is achieved by considering periodic initial value problems on two dimensional lattices. For any Yang-Baxter map that admits a Lax matrix, there is a f ...
περισσότερα

Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.

DOI
10.12681/eadd/27992
Διεύθυνση Handle
http://hdl.handle.net/10442/hedi/27992
ND
27992
Εναλλακτικός τίτλος
Yang - Baxter maps, poisson structure and integrability
Συγγραφέας
Κουλούκας, Θεόδωρος του Ευάγγελος
Ημερομηνία
2010
Ίδρυμα
Πανεπιστήμιο Πατρών. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών. Τομέας Εφαρμοσμένης Ανάλυσης
Εξεταστική επιτροπή
Αρβανιτογεώργος Ανδρέας
Γκίκας Δημήτριος
Δοίκου Αναστασία
Μπούντης Αναστάσιος
Πνευματικός Σπυρίδων
Τσουμπελής Δημήτριος
Επιστημονικό πεδίο
Φυσικές Επιστήμες
Μαθηματικά
Λέξεις-κλειδιά
Yang Baxter απεικονίσεις; Ολοκληρωσιμότητα; Πίνακες Lax; Αναπαραγοντοποίηση πίνακα; Poisson δομή; Αγκύλη Sklyanin
Χώρα
Ελλάδα
Γλώσσα
Ελληνικά
Άλλα στοιχεία
πιν., σχημ.
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Σχετικές εγγραφές (με βάση τις επισκέψεις των χρηστών)