Αλγόριθμοι πολυκριτήριας βελτιστοποίησης για το σχεδιασμό γραμμής προϊόντων
Περίληψη
Οι τακτικές που υιοθετούν οι παραγωγικές μονάδες για την εισαγωγή νέων και καινοτόμων προϊόντων στην αγορά, αποτελούν σημαντικό παράγοντα οικονομικής ανάπτυξης, κυριαρχίας, και εν γένει, βασικό συντελεστή βιωσιμότητας της επιχειρησιακής τους δραστηριότητας. Στην κατεύθυνση αυτή, ο σχεδιασμός μιας γραμμής προϊόντων αποτελεί μια καίρια επιχειρησιακή λειτουργία, για την a priori εκτίμηση της πιθανής της επιτυχίας, μιας και συνδέεται άμεσα τόσο με την κερδοφορία της επιχείρησης όσο και με τη διαμόρφωση του μεριδίου σε ανταγωνιστικές συνθήκες αγοράς. Παρόλο που τα προϊόντα αυτά μπορεί να κατασκευαστούν σύμφωνα με πολλά κριτήρια, οι περισσότερες προσεγγίσεις επικεντρώνονται στη βελτιστοποίηση ενός μονάχα κριτηρίου. Υπό την οπτική αυτή, η παρούσα διδακτορική μελέτη διαπραγματεύεται το πρόβλημα του βέλτιστου σχεδιασμού γραμμών προϊόντων, λαμβάνοντας υπόψη περισσότερα από ένα κριτήρια, χρησιμοποιώντας 23 παραλλαγές από επτά μεθευρετικούς πολυκριτήριους αλγορίθμους μαθηματικής βελτιστοποίησης. Ο ...
περισσότερα
Περίληψη σε άλλη γλώσσα
Introducing new products has an important role in sustainability and profitability of a firm. Product Line Design (PLD) is a key decision area that product managers have to deal with in the early stages of product development, to estimate the potential success of a product. Even though several objectives may be simultaneously pursued during the product configuration process, most reported studies have focused on single-objective optimization. In this research, the multi-objective PLD (MOPLD) problem is addressed, by taking into account more than one objectives, to provide product managers with a better tradeoff among them, using 23 variants of seven state-of-the-art metaheuristics. The seven main multi-objective metaheuristics used in this research are Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), Firefly Algorithm (FA), Differential Evolution (DE), Grey Wolf Optimizer (GWO), Teaching-Learning Based Optimization (TLBO) and Mayfly Algorithm (MA). Those seven multi-objecti ...
περισσότερα
Κατεβάστε τη διατριβή σε μορφή PDF (21.89 MB)
(Η υπηρεσία είναι διαθέσιμη μετά από δωρεάν εγγραφή)
|
Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.
|
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.