Self-starting methods in Bayesian statistical process control and monitoring
Abstract
In this dissertation, the center of attention is in the research area of Bayesian Statistical Process Control and Monitoring (SPC/M) with emphasis in developing self-starting methods for short horizon data. The aim is in detecting a process disorder as soon as it occurs, controlling the false alarm rate, and providing reliable posterior inference for the unknown parameters. Initially, we will present two general classes of methods for detecting parameter shifts for data that belong to the regular exponential family. The first, named Predictive Control Chart (PCC), focuses on transient shifts (outliers) and the second, named Predictive Ratio CUSUM (PRC), in persistent shifts. In addition, we present an online change point scheme available for both univariate or multivariate data, named Self-starting Shiryaev (3S). It is a generalization of the well-known Shiryaev's procedure, which will utilize the cumulative posterior probability that a change point has been occurred. An extensive simu ...
show more
![]() | |
![]() | Download full text in PDF format (4.05 MB)
(Available only to registered users)
|
All items in National Archive of Phd theses are protected by copyright.
|
Usage statistics

VIEWS
Concern the unique Ph.D. Thesis' views for the period 07/2018 - 07/2023.
Source: Google Analytics.
Source: Google Analytics.

ONLINE READER
Concern the online reader's opening for the period 07/2018 - 07/2023.
Source: Google Analytics.
Source: Google Analytics.

DOWNLOADS
Concern all downloads of this Ph.D. Thesis' digital file.
Source: National Archive of Ph.D. Theses.
Source: National Archive of Ph.D. Theses.

USERS
Concern all registered users of National Archive of Ph.D. Theses who have interacted with this Ph.D. Thesis. Mostly, it concerns downloads.
Source: National Archive of Ph.D. Theses.
Source: National Archive of Ph.D. Theses.