Development and implementation of methodologies for the analysis and visualisation of omic data of cellular senescence and metabolic syndrome

Abstract

In recent years rapid technological advances have led to new experimental and computational high-throughput quantitative methodologies, resulting in the accumulation of a great volume of valuable experimental high-dimentionality data. New high-throughput, omic analysis technologies at the genomic, transcriptomic, proteomic and metabolic levels provide the possibility for detailed functional analysis of molecular pathways involved in different biological phenomena and at different biological levels to aid in the elucidation of the affected biological networks. The main goal of systems biology is the integration of information from different experiments at different biological levels, to achieve a holistic understanding of complex phenotypes, caused by different changes in the biological systems that are in constant interaction. In the first part of this thesis we developed an analytical methodology for transcriptomic data, in order to create and compare models of gene expression and cel ...
show more

All items in National Archive of Phd theses are protected by copyright.

DOI
10.12681/eadd/47730
Handle URL
http://hdl.handle.net/10442/hedi/47730
ND
47730
Alternative title
Ανάπτυξη και εφαρμογή μεθοδολογιών για την ανάλυση και την οπτικοποίηση ομικών δεδομένων που αφορούν στην κυτταρική γήρανση και το μεταβολικό σύνδρομο
Author
Binenbaum, Ilona (Father's name: Vladimiros)
Date
2020
Degree Grantor
University of Patras
Committee members
Κατσώρης Παναγιώτης
Κλάπα Μαρία
Χατζηιωάννου Αριστοτέλης
Μοσχονάς Νικόλαος
Αλεξόπουλος Λεωνίδας
Φλυτζάνης Κωνσταντίνος
Χονδρογιάννη Νίκη
Discipline
Natural Sciences
Biological Sciences
Keywords
Bioinformatic analysis; Transcriptomics; Cellular senescence; Obesity; Systems biology
Country
Greece
Language
Greek
Description
134 σ., im., tbls., fig., ch.
Rights and terms of use
Το έργο παρέχεται υπό τους όρους της δημόσιας άδειας του νομικού προσώπου Creative Commons Corporation:
Usage statistics
VIEWS
Concern the unique Ph.D. Thesis' views for the period 07/2018 - 07/2023.
Source: Google Analytics.
ONLINE READER
Concern the online reader's opening for the period 07/2018 - 07/2023.
Source: Google Analytics.
DOWNLOADS
Concern all downloads of this Ph.D. Thesis' digital file.
Source: National Archive of Ph.D. Theses.
USERS
Concern all registered users of National Archive of Ph.D. Theses who have interacted with this Ph.D. Thesis. Mostly, it concerns downloads.
Source: National Archive of Ph.D. Theses.
Related items (based on users' visits)