Συνεχείς επεκτάσεις μεθόδων Runge-Kutta για προβλήματα αρχικών τιμών

Abstract

In this dissertation we examine methods in order to produce continuous extensions of Runge-Kutta algorithms when solving initial value problems. We consider two ways (I) scaling (II) interpolation. The same extension was done for Runge-Kutta-Nystrom methods for initial value problem of second class.

All items in National Archive of Phd theses are protected by copyright.

DOI
10.12681/eadd/1505
Handle URL
http://hdl.handle.net/10442/hedi/1505
ND
1505
Author
Tsitouras, Charalambos (Father's name: G.)
Date
1990
Degree Grantor
National Technical University of Athens (NTUA)
Committee members
Παπαγεωργίου Γιώργος
Ράπτης Αριστοτέλης
Χρυσοβέργης Ίων
Μισυρλής Νίκος
Σκορδαλάκης Εμμανουήλ
Discipline
Natural SciencesMathematics
Keywords
Initial value problem; Interpolation; Numerical analysis; Runge-Kutta method; Scaling
Country
Greece
Language
Greek
Description
155 σ.
Usage statistics
VIEWS
Concern the unique Ph.D. Thesis' views for the period 07/2018 - 07/2023.
Source: Google Analytics.
ONLINE READER
Concern the online reader's opening for the period 07/2018 - 07/2023.
Source: Google Analytics.
DOWNLOADS
Concern all downloads of this Ph.D. Thesis' digital file.
Source: National Archive of Ph.D. Theses.
USERS
Concern all registered users of National Archive of Ph.D. Theses who have interacted with this Ph.D. Thesis. Mostly, it concerns downloads.
Source: National Archive of Ph.D. Theses.
Related items (based on users' visits)