Εκμάθηση οπτικών αναπαραστάσεων για αναγνώριση σε εικόνες εγγράφων

Περίληψη

Η ανάλυση και αναγνώριση εικόνων εγγραφών αποτελεί έναν σημαντικό τομέα ερευνάς που συνδυάζει του τομείς της Όρασης Υπολογιστών και Μηχανικής Μάθησης και έχει άμεση επίδραση στον κλάδο των ανθρωπιστικών σπουδών, καθώς είναι δυνατό να αποκτηθεί αυτοματοποιημένη πρόσβαση στην περικλείουσα πληροφορία μεγάλου όγκου ιστορικών εγγραφών. Στην παρούσα διδακτορική διατριβή, επικεντρωνόμαστε στην εξαγωγή και εκμάθηση οπτικών αναπαραστάσεων με σκοπό τον επιτυχή εντοπισμό και την αναγνώριση κειμένου σε χειρόγραφα έγγραφα. Κύριος γνώμονας των αναπτυχθέντων μεθοδολογιών είναι η δημιουργία αποδοτικών συστημάτων με ελαχιστοποιημένες υπολογιστικές απαιτήσεις. Στην πορεία της διατριβής, καταπιανόμαστε με προβλήματα κλιμακούμενης δυσκολίας και απαιτήσεων με τελικό στόχο ένα αποδοτικό σύστημα εντοπισμού λέξεων, εστιάζοντας στην βελτιστοποίηση των οπτικών αναπαραστάσεων από λέξεις. Συγκεκριμένα εξετάζουμε τεχνικές εξαγωγής χαρακτηριστικών, αλλά και τρόπους βελτιστοποίησης της απόδοσής τους, δεδομένου της ι ...
περισσότερα

Περίληψη σε άλλη γλώσσα

Document Analysis and Recognition is a prominent research area which combines the fields of Computer Vision and Machine Learning and has a great impact to humanitarian studies, by unraveling information stored in collections of historical documents all over the world. In this PhD thesis, we focus on extracting and learning visual representations capable of successfully detecting and recognizing text in handwritten documents. The main intention behind the developed methodologies, presented in thesis, is the creation of efficient systems with minimal computational requirements, aiming towards real-time applications. During the thesis, we tackle document-related problems of increasing difficulty, while the main goal is the development of a effective word detection approach by focusing on the improvement of the extracted visual representation of text. Specifically we explore feature extraction techniques along with possible improvement modifications, based on the specific characteristics o ...
περισσότερα
Πρέπει να είστε εγγεγραμένος χρήστης για έχετε πρόσβαση σε όλες τις υπηρεσίες του ΕΑΔΔ  Είσοδος /Εγγραφή

Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.

Διεύθυνση Handle
http://hdl.handle.net/10442/hedi/47160
ND
47160
Εναλλακτικός τίτλος
Visual representation learning for document image recognition
Συγγραφέας
Ρετσινάς, Γεώργιος Κωνσταντίνος
Ημερομηνία
2020
Ίδρυμα
Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ). Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Σημάτων, Ελέγχου και Ρομποτικής. Εργαστήριο Όρασης Υπολογιστών, Επικοινωνίας Λόγου και Επεξεργασίας Σημάτων
Εξεταστική επιτροπή
Μαραγκός Πέτρος
Γάτος Βασίλειος
Τζαφέστας Κωνσταντίνος
Γκούμας Γεώργιος
Κατσούρος Βασίλειος
Κόλλιας Στέφανος
Ποταμιάνος Γεράσιμος
Επιστημονικό πεδίο
Μηχανική & Τεχνολογία
Επιστήμες Ηλεκτρολόγου Μηχανικού, Ηλεκτρονικού Μηχανικού & Μηχανικού Η/Υ
Λέξεις-κλειδιά
Επεξεργασία και αναγνώριση κειμένων; Εντοπισμός λέξεων; Βαθιά μάθηση; Συμπίεση νευρωνικών δικτύων
Χώρα
Ελλάδα
Γλώσσα
Αγγλικά
Άλλα στοιχεία
220 σ., εικ., πιν., σχημ., γραφ.