Αλγοριθμική και εξελικτική θεωρία παιγνίων
Περίληψη
Στα πλαίσια της διατριβής αναπτύξαμε δύο από τους πρώτους αλγορίθμους υπολογισμού μιας ε-προσεγγιστικής ισορροπίας Nash για την περίπτωση όπου το ε είναι κάποια σταθερά. Οι προσεγγίσεις που επιτυγχάνουν οι αλγόριθμοί μας είναι ε=3/4 και ε=(2+λ)/4 αντίστοιχα, όπου λ είναι το ελάχιστο, μεταξύ όλων των ισορροπιών Nash, κέρδος για έναν παίκτη. Επιπλέον, μελετήσαμε μια ευρεία κλάση τυχαίων παιγνίων δύο παικτών, για την οποία υπολογίσαμε μια πολύ καλή ε-προσεγγιστική ισορροπία Nash, με το ε να τείνει στο 0 καθώς το πλήθος των διαθέσιμων στρατηγικών των παικτών τείνει στο άπειρο. Οι αρχές της θεωρίας παιγνίων είναι χρήσιμες στην ανάλυση της επίδρασης που έχει στην καθολική απόδοση ενός συστήματος διαμοιραζόμενων πόρων η εγωιστική και ανταγωνιστική συμπεριφορά των χρηστών του. Προς την κατεύθυνση αυτή, εστιάσαμε στο πρόβλημα της εξισορρόπησης φορτίου. Μελετήσαμε διάφορα μοντέλα πληροφόρησης (π.χ. όταν όλα τα φορτία είναι άγνωστα ή όταν κάθε παίκτης γνωρίζει το μέγεθος του δικού του φορτίου) κα ...
περισσότερα
Περίληψη σε άλλη γλώσσα
We developed two algorithms for computing an e-approximate Nash equilibrium for the case where e is an absolute constant. The approximations achieved by our algorithms are e=3/4 and e=(2+l)/4 respectively, where $\lambda$ is the minimum, among all Nash equilibria, payoff of either player. Furthermore, we studied a wide class of random two player games, for which we showed how to compute an e-approximate Nash equilibrium, where e tends to zero as the number of strategies of the players tends to infinity. Game theoretic concepts are useful in determining the impact that selfish behavior plays on the global performance of a system involving selfish entities. Towards this direction, we focused on the problem of load balancing. We studied the case where the agents are not necessarily fully informed about the exact values of their loads. We focused on several models of information (e.g. when all agents know nothing about the loads, or when each agents knows her own load) and, for each model, ...
περισσότερα
![]() | Κατεβάστε τη διατριβή σε μορφή PDF (826.01 kB)
(Η υπηρεσία είναι διαθέσιμη μετά από δωρεάν εγγραφή)
|
Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.
|
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.






