Τεχνικές σχεδίασης παράλληλων υπολογιστικών αρχιτεκτονικών για επεξεργασία σε πραγματικό χρόνο αλγορίθμων μάθησης
Περίληψη
H παρούσα διδακτορική διατριβή έχει ως βασικό αντικείμενο μελέτης τα Συνελικτικά Νευρωνικά Δίκτυα (Convolutional Neural Networks - CNNs) για εφαρμογές υπολογιστικής όρασης (computer vision) και συγκεκριμένα εστιάζει στην εκτέλεση της διαδικασίας της εξαγωγής συμπερασμάτων των CNNs (CNN inference) σε ενσωματωμένους επιταχυντές κατάλληλους για εφαρμογές της υπολογιστικής των παρυφών (edge computing). Ο σκοπός της διατριβής είναι να αντιμετωπίσει τις τρέχουσες προκλήσεις σχετικά με τη βελτιστοποίηση των CNNs προκειμένου αυτά να υλοποιηθούν σε edge computing πλατφόρμες, καθώς και τις προκλήσεις στο πεδίο των τεχνικών σχεδίασης αρχιτεκτονικών επιταχυντών για CNNs. Προς αυτή την κατεύθυνση, η παρούσα διατριβή επικεντρώνεται σε διαφορετικές εφαρμογές βαθιάς μάθησης (deep learning), συμπεριλαμβανομένης της επεξεργασίας εικόνων σε δορυφόρους και της πρόβλεψης ηλιακής ακτινοβολίας από εiv class="nav-item p-0 ">
Ίδρυμα
περισσότερα
![]() |
Τεχνικές σχεδίασης παράλληλων υπολογιστικών αρχιτεκτονικών για επεξεργασία σε πραγματικό χρόνο αλγορίθμων μάθησης
Περίληψη
H παρούσα διδακτορική διατριβή έχει ως βασικό αντικείμενο μελέτης τα Συνελικτικά Νευρωνικά Δίκτυα (Convolutional Neural Networks - CNNs) για εφαρμογές υπολογιστικής όρασης (computer vision) και συγκεκριμένα εστιάζει στην εκτέλεση της διαδικασίας της εξαγωγής συμπερασμάτων των CNNs (CNN inference) σε ενσωματωμένους επιταχυντές κατάλληλους για εφαρμογές της υπολογιστικής των παρυφών (edge computing). Ο σκοπός της διατριβής είναι να αντιμετωπίσει τις τρέχουσες προκλήσεις σχετικά με τη βελτιστοποίηση των CNNs προκειμένου αυτά να υλοποιηθούν σε edge computing πλατφόρμες, καθώς και τις προκλήσεις στο πεδίο των τεχνικών σχεδίασης αρχιτεκτονικών επιταχυντών για CNNs. Προς αυτή την κατεύθυνση, η παρούσα διατριβή επικεντρώνεται σε διαφορετικές εφαρμογές βαθιάς μάθησης (deep learning), συμπεριλαμβανομένης της επεξεργασίας εικόνων σε δορυφόρους και της πρόβλεψης ηλιακής ακτινοβολίας από εld of CNN accelerator architectures design techniques. In this direction, the thesis focuses on different deep learning applications, including on-board payload data processing as well as solar irradiance forecasting, and makes distinct contributions to four different challenges in the fields of CNN optimization and CNN accelerators design. First, the thesis contributes to the existing literature regarding image processing techniques and deep learning-based image regression for solar irradiance estimation and forecasting. It proposes an image processing method which is based on accurate sun lo ...
περισσότερα
εια αποτελεσμάτων. Η διατριβή διενεργεί μια μελέτη ανάμεσα σε CNN μοντέλα της βιβλιογραφίας για εντοπισμό σύννεφων που έχουν αξιολογηθεί στα ίδια δεδομένα με το προτεινόμενο μοντέλο, και έτσι αναδεικνύει τα προτερήματά του. Επιπλέον, η διδακτορική διατριβή στοχεύει στην αποδοτική υλοποίηση του inference των CNNs επεξεργασίας εικόνας σε ενσωματωμένους επιταχυντές κατάλληλους για εφαρμογές edge computing. Για τον σκοπό αυτό, η διατριβή επιλέγει τα Field-ProgrammableGate Arrays (FPGAs) για την επιτάχυνση των CNNs και συνεισφέρει τις λεπτομέρειες της μεθοδολογίας ανάπτυξης που υιοθετήθηκε και η οποία βασίζεται στο εργαλείο Xilinx Vitis AI. Πέρα από τη μελέτη των δυνατοτήτων του Vitis AI, όπως των προχωρημένων τεχνικών κβάντισης των μοντέλων, η διατριβή παρουσιάζει επιπλέον και μια προσέγγιση επιτάχυνσης για την επιτάχυνση των επιμέρους διεργασιών μιας ολοκληρωμένης εργασίας μηχανικής όρασης η οποία εκμεταλλεύεται τους ετερογενείς πόρους του FPGA. Τα αποτελέσματα χρόνων εκτέλεσης και διεκπεραιωτικότητας (throughput) των CNNs τόσο για τη δυαδική κατάτμηση εικόνων για εντοπισμό σύννεφων όσο και για την εκτίμηση ηλιακής ακτινοβολίας από εικόνες, στο FPGA, αναδεικνύουν τις δυνατότητες επεξεργασίας σε πραγματικό χρόνο του επιταχυντή. Τέλος, η διδακτορική διατριβή συνεισφέρει τη σχεδίαση ενός συστήματος διεπαφής, υψηλών επιδόσεων και με ανοχή στα σφάλματα, για την αμφίδρομη μεταφορά εικόνων ανάμεσα σε ενσωματωμένους επιταχυντές βαθιάς μάθησης, στα πλαίσια υπολογιστικών αρχιτεκτονικών για επεξεργασία δεδομένων σε δορυφόρους. Το σύστημα διεπαφής αναπτύχθηκε για την επικοινωνία ανάμεσα σε ένα FPGA και τον επιταχυντή Intel Movidius Myriad 2 και η εκτεταμένη διαδικασία επαλήθευσης του συστήματος, τόσο σε εμπορικά διαθέσιμες όσο και σε πρωτότυπες πλατφόρμες, έδειξε πως αυτό μπορεί να επιτύχει μέχρι και 2.4 Gbps αμφίδρομους ρυθμούς μετάδοσης δεδομένων εικόνων.
περισσότερα
![]() |
Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.
Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.
|