Εξελιγμένες και πλήρεις μέθοδοι συναρτησιακών χρονικά μεταβαλλόμενων μοντέλων αυτοπαλινδρόμησης και κινητού μέσου όρου (FS-TARMA) για την δυναμική αναγνώριση και διάγνωση βλαβών σε μη-στάσιμα στοχαστικά συστήματα κατασκευών

Περίληψη

Μη-στάσιμα σήματα, δηλαδή σήματα με χρονικά μεταβαλλόμενες (ΧΜ) στατιστικές ιδιότητες, απαντώνται συχνά στην επιστήμη του μηχανικού. Τυπικά παραδείγματα αποτελούν οι ταλαντωτικές αποκρίσεις κατασκευών, όπως γέφυρες με κινούμενα οχήματα, ρομποτικές διατάξεις, περιστρεφόμενες μηχανές και άλλες. Κατασκευές που χαρακτηρίζονται από ιδιότητες οι οποίες μεταβάλλονται με τον χρόνο αναφέρονται ως ΧΜ κατασκευές και η δυναμική αναγνώριση και ανάλυση τους επί τη βάση ταλαντωτικών σημάτων απόκρισης αποτελεί σημαντικό και ταυτόχρονα δύσκολο πρόβλημα. Μια σημαντική τάξη παραμετρικών μεθόδων για την επίλυση αυτού του προβλήματος βασίζεται στα συναρτησιακά χρονικά μεταβαλλόμενα μοντέλα αυτοπαλινδρόμησης κινητού μέσου όρου (FS-TARMA, Functional Series Time-Dependent Auto-Regressive Moving Average). Τα μοντέλα αυτά χαρακτηρίζονται απο ΧΜ παραμέτρους οι οποίες ακολουθούν καθοριστικό πρότυπο και κατά συνέπεια μπορούν να προβληθούν σε κατάλληλα επιλεγμένους συναρτησιακούς υποχώρους. Ως βασικός στόχος της πα ...
περισσότερα

Περίληψη σε άλλη γλώσσα

Non-stationary signals, that is signals with time-varying (TV) statistical properties, are commonly encountered in engineering practice. The vibration responses of structures, such as traffic-excited bridges, robotic devices, rotating machinery, and so on, constitute typical examples of non-stationary signals. Structures characterized by properties that vary with time are generally referred as TV structures and their vibration-based identification under normal operating conditions is a significant and challenging problem. An important class of parametric methods for the solution of this problem is based on Functional Series Time-dependent AutoRegressive Moving Average (FS-TARMA) models. These models have parameters that explicitly depend on time, with the dependence described by deterministic functions belonging to specific functional sub-spaces. The focus of the present thesis is on the development of complete and advanced FS-TARMA methods that will offer important improvements in ove ...
περισσότερα

Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.

DOI
10.12681/eadd/28631
Διεύθυνση Handle
http://hdl.handle.net/10442/hedi/28631
ND
28631
Εναλλακτικός τίτλος
Advanced and complete functional series time-dependent ARMA (FS-TARMA) methods for the identification and fault diagnosis of non-stationary stochastic structural systems
Συγγραφέας
Σπυριδωνάκος, Μηνάς του Δημήτριος
Ημερομηνία
2012
Ίδρυμα
Πανεπιστήμιο Πατρών. Σχολή Πολυτεχνική. Τμήμα Μηχανολόγων και Αεροναυπηγών Μηχανικών
Εξεταστική επιτροπή
Σπήλιος Φασόης
Τζες Αντώνης
Μπερμπερίδης Κώστας
Μπούντης Τάσσος
Αντωνιάδης Ιωάννης
Μανατάκης Μανώλης
Σακελλαρίου Ιωάννης
Επιστημονικό πεδίο
Επιστήμες Μηχανικού και ΤεχνολογίαΕπιστήμη Μηχανολόγου Μηχανικού
Λέξεις-κλειδιά
Χρονικά μεταβαλλόμενες κατασκευές; Μη-στάσιμα σήματα; Ταλαντωτική ανάλυση; Μοντελοποίηση; Χρονικά μεταβαλλόμενα ARMA μοντέλα; Συναρτησιακά μοντέλα
Χώρα
Ελλάδα
Γλώσσα
Αγγλικά
Άλλα στοιχεία
xxii, 224 σ., εικ., πιν., σχημ., γραφ.
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.