Δημιουργία και αξιολόγηση επεξηγήσεων μέσω αντιπαραδειγμάτων

Περίληψη

Η Τεχνητή Νοημοσύνη (ΤΝ) έχει σημειώσει σημαντική πρόοδο, μεταβαίνοντας από ερευνητικά πρωτότυπα σε ευρείας κλίμακας εφαρμογές στους τομείς της υγείας, των χρηματοοικονομικών, της ασφάλειας και των μεταφορών. Παρά την επιτυχία τους, τα μοντέλα ΤΝ συχνά λειτουργούν ως αδιαφανείς"μαύρα κουτιά", εγείροντας ανησυχίες σχετικά με την εμπιστοσύνη, την αποδοχή και τον κίνδυνο σε εφαρμογές υψηλού ρίσκου. Η επεξηγήσιμη τεχνητή νοημοσύνη αντιμετωπίζει αυτά τα ζητήματα αναπτύσσοντας μεθόδους που βελτιώνουν την ανθρώπινη κατανόηση σύνθετων μοντέλων. Η παρούσα διατριβή εστιάζει στις σημασιολογικές επεξηγήσεις μέσω αντιπαραδειγμάτων, οι οποίες καθορίζουν τις ελάχιστες τροποποιήσεις εισόδου που απαιτούνται για την αλλαγή της πρόβλεψης ενός μοντέλου ΤΝ. Παρουσιάζεται ένα ανεξάρτητο από το πεδίο εφαρμογής και του υποκείμενου μοντέλου πλαίσιο για τη δημιουργία αντιπαραδειγματικών εξηγήσεων, το οποίο δοκιμάστηκε σε πολλαπλές μορφές δεδομένων, όπως εικόνες, κείμενο και ήχος. Στο πλαίσιο αυτό, εξερευνώνται ...
περισσότερα

Περίληψη σε άλλη γλώσσα

Artificial Intelligence (AI) has made significant strides, transitioning from research prototypes to large-scale deployments in healthcare, finance, security, and transportation. Despite their success, AI models often function as opaque black boxes, raising concerns about trust, adoption, and risk in high-stakes applications. Explainable AI (XAI) addresses these issues by developing methods to enhance human interpretability of complex models. This dissertation focuses on counterfactual explanations, which determine the minimal input modifications required to alter an AI model’s prediction. A domain-agnostic, black-box framework for counterfactual generation is introduced, applicable across multiple data modalities, including images, text, and audio. Within this framework, various algorithmic approaches are explored, including Graph Neural Networks (GNNs) for structured data and non-neural optimization techniques for counterfactual synthesis. Beyond generation, this work introduces a no ...
περισσότερα
Η διατριβή αυτή δεν είναι ακόμα διαθέσιμη ηλεκτρονικά
Διεύθυνση Handle
http://hdl.handle.net/10442/hedi/59267
ND
59267
Εναλλακτικός τίτλος
Generation and evaluation of semantic counterfactual explanations
Συγγραφέας
Φιλανδριανός, Γεώργιος (Πατρώνυμο: Βασίλειος)
Ημερομηνία
2025
Ίδρυμα
Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ). Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών. Εργαστήριο Συστημάτων Τεχνητής Νοημοσύνης και Μάθησης
Εξεταστική επιτροπή
Στάμου Γεώργιος
Βουλόδημος Αθανάσιος
Βαζιργιάννης Μιχάλης
Νικήτα Κωνσταντίνα
Κοζύρης Νεκτάριος
Καρκαλέτσης Ευάγγελος
Ζέρβα Χρυσούλα
Επιστημονικό πεδίο
Επιστήμες Μηχανικού και ΤεχνολογίαΕπιστήμη Ηλεκτρολόγου Μηχανικού, Ηλεκτρονικού Μηχανικού, Μηχανικού Η/Υ ➨ Υπολογιστές, Υλικό (hardware) και Αρχιτεκτονική
Λέξεις-κλειδιά
Επεξηγήσεις μέσω Αντιπαραδειγμάτων; Επεξηγήσιμη τεχνητή νοημοσύνη; Επεξεργασία φυσικής γλώσσας; Αξιολόγηση; Τεχνητή νοημοσύνη
Χώρα
Ελλάδα
Γλώσσα
Αγγλικά
Άλλα στοιχεία
εικ., πιν., σχημ., γραφ.
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.