Παράλληλες και κατανεμημένες μέθοδοι για αυτόνομη σχεδίαση τεχνητών νευρωνικών δικτύων

Περίληψη

Τα τελευταία χρόνια, τα νευρωνικά δίκτυα με τη μορφή του deep learning έχουν αναζωπυρώσει το ενδιαφέρον για την τεχνητή νοημοσύνη. Οι εφαρμογές που αξιοποιούν το deep learning έχουν αυτοματοποιήσει αρκετές εργασίες που είναι δύσκολο να εκφραστούν αλγοριθμικά. Τα παραδείγματα περιλαμβάνουν αναγνώριση αντικειμένων σε μια εικόνα, μέτρηση του αριθμού των εμφανίσεων για το ίδιο αντικείμενο, αυτόνομη οδήγηση και ακριβή μετατροπή ομιλίας σε κείμενο. Ενώ το deep learning επιτρέπει την αυτοματοποίηση τέτοιων εργασιών χωρίς ρητές οδηγίες προς τον υπολογιστή, χρειάζονται πολύπλοκες νευρωνικές αρχιτεκτονικές. Αυτές οι αρχιτεκτονικές απαιτούν αρκετές ώρες και υπολογιστικούς πόρους για να σχεδιαστούν. Επιπλέον, απαραίτητη προϋπόθεση είναι η τεχνογνωσία τόσο στα νευρωνικά δίκτυα όσο και στο συγκεκριμένο πεδίο εφαρμογής. Η αναζήτηση νευρωνικής αρχιτεκτονικής (Neural Architecture Search) στοχεύει στην αυτοματοποίηση της διαδικασίας σχεδιασμού των δικτύων με πολλές διαφορετικές προσεγγίσεις, συμπεριλαμβ ...
περισσότερα

Περίληψη σε άλλη γλώσσα

In recent years, neural networks in the form of deep learning have re-ignited a widespread interest in artificial intelligence. The applications that leverage deep learning have automated several conceptionally easy tasks that are hard to express algorithmically. Examples include identifying objects in an image, counting the number of occurrences for the same object, autonomous driving and accurate speech-to-text. While deep learning enables the automation of such tasks without explicitly instructing the machine, intricate neural architectures are employed. These architectures require several person-hours and computational resources to design them. Furthermore, expertise both in neural networks and in the specific field of application are pre-requisites.Neural architecture search aims to automate the process of designing the networks by several different approaches, including metaheuristics, reinforcement learning, and differentiable methods. This thesis employs and studies parallel an ...
περισσότερα

Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.

DOI
10.12681/eadd/51944
Διεύθυνση Handle
http://hdl.handle.net/10442/hedi/51944
ND
51944
Εναλλακτικός τίτλος
Parallel and distributed methods for autonomous design of artificial neural networks
Συγγραφέας
Κυριακίδης, Γεώργιος του Ελευθέριος
Ημερομηνία
2022
Ίδρυμα
Πανεπιστήμιο Μακεδονίας. Σχολή Επιστημών Πληροφορίας. Τμήμα Εφαρμοσμένης Πληροφορικής
Εξεταστική επιτροπή
Μαργαρίτης Κωνσταντίνος
Ρεφανίδης Ιωάννης
Σαμαράς Νικόλαος
Χρήστου-Βαρσακέλης Δημήτριος
Σιφαλέρας Άγγελος
Διαμαντάρας Κωνσταντίνος
Ηλιάδης Λάζαρος
Επιστημονικό πεδίο
Φυσικές ΕπιστήμεςΕπιστήμη Ηλεκτρονικών Υπολογιστών και Πληροφορική ➨ Τεχνητή νοημοσύνη
Λέξεις-κλειδιά
Αναζήτηση Αρχιτεκτονικών Νευρωνικών Δικτύων; Αρχιτεκτονικές Νευρωνικών Δικτύων; Νευρωνικά δίκτυα
Χώρα
Ελλάδα
Γλώσσα
Αγγλικά
Άλλα στοιχεία
εικ., πιν., σχημ., γραφ.
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Σχετικές εγγραφές (με βάση τις επισκέψεις των χρηστών)