A contribution to non-linear PDEs with applications to the level set method, non-Newtonian fluid flows and the Boltzmann equation
Abstract
This thesis consists of three different and independent chapters, concerning the mathematical study of three distinctive physical problems, which are modelled by three non-linear partial differential equations. These equations concern the level set method, the theory of incompressible flow of non-Newtonian materials and the kinetic theory of rarefied gases. The first chapter of the thesis concerns the dynamics of moving interfaces and contains a rigorous justification of a numerical procedure called re-initialization, for which there are several applications in the context of the level set method. We apply these results for first order level set equations. We write the re-initialization procedure as a splitting algorithm and study the convergence of the algorithm using homogenization techniques in the time variable. As a result of the rigorous analysis, we are also able to introduce a new method for the approximation of the distance function in the context of the level set method. In t ...
show more
![]() | |
![]() | Download full text in PDF format (1.36 MB)
(Available only to registered users)
|
All items in National Archive of Phd theses are protected by copyright.
|
Usage statistics

VIEWS
Concern the unique Ph.D. Thesis' views for the period 07/2018 - 07/2023.
Source: Google Analytics.
Source: Google Analytics.

ONLINE READER
Concern the online reader's opening for the period 07/2018 - 07/2023.
Source: Google Analytics.
Source: Google Analytics.

DOWNLOADS
Concern all downloads of this Ph.D. Thesis' digital file.
Source: National Archive of Ph.D. Theses.
Source: National Archive of Ph.D. Theses.

USERS
Concern all registered users of National Archive of Ph.D. Theses who have interacted with this Ph.D. Thesis. Mostly, it concerns downloads.
Source: National Archive of Ph.D. Theses.
Source: National Archive of Ph.D. Theses.