Τελικές επεκτάσεις μοντέλων υποσυστημάτων της αριθμητικής
Περίληψη
Η διδακτορική διατριβή ασχολείται με τη μελέτη προβλημάτων που αφορούν τελικές επεκτάσεις μοντέλων υποσυστημάτων της πρωτοβάθμιας αριθμητικής Peano. Πιο συγκεκριμένα, το πρόβλημα του J. Paris: «Υπάρχει, για κάθε αριθμήσιμο μοντέλο της Σ_1 συλλογής γνήσια τελική επέκτασή του που ικανοποιεί την ∆_0 επαγωγή;» παραμένει ανοικτό.Το πρόβλημα μελέτησαν οι J. Paris και A. Wilkie (1989), οι οποίοι απέδειξαν ότι ικανή συνθήκη για θετική απάντηση είναι το μοντέλο να είναι I∆_0 -πλήρες (όπου με I∆_0 συμβολίζεται η θεωρία της ∆_0 -επαγωγής). Αποδεικνύουμε ότι η χρήση της έννοιας της I∆_0 -πληρότητας μπορεί να παρακαμφθεί και στη θέση της να χρησιμοποιηθεί η τυποποίηση του κλασικού επιχειρήματος του θεωρήματος πληρότητας (θεώρημα Hilbert-Bernays), με χρήση σημασιολογικών πινάκων (semantic tableaux).Επιπλέον, με την ίδια μεθοδολογία κατάλληλα τροποποιημένη αποδεικνύουμε τη γενίκευση του αποτελέσματος, δηλαδή ότι για κάθε αριθμήσιμο μοντέλο της Σ_n -συλλογής, n > 1, υπάρχει γνήσια Σ_n -στοιχειώδης τελ ...
περισσότερα
Περίληψη σε άλλη γλώσσα
The subject of the Ph.D Thesis is the study of problems concerning end extensions of models of subsystems of first-order Peano arithmetic (PA) in the first order language of arithmetic L A . More specifically the problem first posed by J. Paris, Is every model of Σ_1 -Collection a proper initial segment of a model of bounded induction? Remains unanswered.This problem was stated in an effort to miniaturize the famous McDowell-Specker Theorem that every model of PA has a proper elementary end extension. The main problem was studied by J. Paris and A. Wilkie who showed that a sufficient condition for a positive answer is that the model is I∆_0 -full (where I∆_0 denotes the theory of ∆_0 -induction).We show that the notion of I∆_0 -fullness can be by-passed by alternative proofs to these results which employ the classical argument of the Completeness theorem in its arithmetised form (Hilbert-Bernays) together with consistency statements referring to semantic tableaux methods.Furthermore, u ...
περισσότερα
![]() | |
![]() | Κατεβάστε τη διατριβή σε μορφή PDF (439.14 kB)
(Η υπηρεσία είναι διαθέσιμη μετά από δωρεάν εγγραφή)
|
Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.
|
Στατιστικά χρήσης

ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.

ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.

ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.

ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.