Περίληψη
Στόχος της παρούσας διατριβής είναι να κατασκευαστούν «έξυπνες» τοπολογίες σύνδεσης χρωμοφόρων μεταξύ τους για τη δημιουργία φωτονικών κλωβών, με στόχο την εξάλειψη της απόσβεσης της εκπομπής φωτός από τις τοπικά διεγερμένες καταστάσεις. Στα επόμενα κεφάλαια καταγράφεται η προσπάθεια μέσω της οποίας κατέστη δυνατό να αποσαφηνιστεί η πορεία σύνδεσης μέσω αλληλεπιδράσεων συναρμογής, η οποία θα μπορούσε να αποτελέσει τη βάση για τη δημιουργία άκαμπτων τρισδιάστατων υπερδομών με σχεδόν τέλειες κβαντικές αποδόσεις φθορισμού.Τα μόρια που χρησιμοποιήθηκαν για την επίτευξη των παραπάνω στόχων είναι οι χρωμοφόρες ενώσεις με την κοινή ονομασία BODIPYs (Boron Dippyromethene). Τα BODIPYs είναι συμμετρικά, συζυγιακά, αρωματικά συστήματα αποτελούμενα από έναν εξαμελή, δύο πενταμελείς δακτύλιους και την ομάδα –BF2 τα οποία συγκεντρώνουν μερικές εντυπωσιακές και ελκυστικές φωτοφυσικές ιδιότητες ενώ παρέχουν και συνθετική ευελιξία λόγω της επιδεκτικότητάς τους σε πολλαπλές υποκαταστάσεις. Στη διατριβή ...
Στόχος της παρούσας διατριβής είναι να κατασκευαστούν «έξυπνες» τοπολογίες σύνδεσης χρωμοφόρων μεταξύ τους για τη δημιουργία φωτονικών κλωβών, με στόχο την εξάλειψη της απόσβεσης της εκπομπής φωτός από τις τοπικά διεγερμένες καταστάσεις. Στα επόμενα κεφάλαια καταγράφεται η προσπάθεια μέσω της οποίας κατέστη δυνατό να αποσαφηνιστεί η πορεία σύνδεσης μέσω αλληλεπιδράσεων συναρμογής, η οποία θα μπορούσε να αποτελέσει τη βάση για τη δημιουργία άκαμπτων τρισδιάστατων υπερδομών με σχεδόν τέλειες κβαντικές αποδόσεις φθορισμού.Τα μόρια που χρησιμοποιήθηκαν για την επίτευξη των παραπάνω στόχων είναι οι χρωμοφόρες ενώσεις με την κοινή ονομασία BODIPYs (Boron Dippyromethene). Τα BODIPYs είναι συμμετρικά, συζυγιακά, αρωματικά συστήματα αποτελούμενα από έναν εξαμελή, δύο πενταμελείς δακτύλιους και την ομάδα –BF2 τα οποία συγκεντρώνουν μερικές εντυπωσιακές και ελκυστικές φωτοφυσικές ιδιότητες ενώ παρέχουν και συνθετική ευελιξία λόγω της επιδεκτικότητάς τους σε πολλαπλές υποκαταστάσεις. Στη διατριβή αυτή περιγράφεται η σύνθεση, ο χαρακτηρισμός και η μελέτη διαφόρων BODIPYs , καθώς και η δημιουργία, ο χαρακτηρισμός και η μελέτη φωτοφυσικών ιδιοτήτων, νανοδομών των BODIPYs με οργανομεταλλικές ενώσεις του λευκοχρύσου (Pt), μέσω της τεχνικής της αυτο-συναρμολόγησης. Σε πρώτο στάδιο, έγινε εκτενής φασματοσκοπική ανάλυση με Φασματοσκοπία Ορατού – Υπεριώδους (UV-Visible Spectroscopy), Φασματοσκοπία Φθορισμού Στατικής Κατάστασης (Steady State Fluorescence Spectroscopy) και Χρονικά Αναλελυμένη Φασματοσκοπία Εκπομπής (Time-Resolved Emission Spectroscopy - TRES), σε διαλύτη CHCl3 και 2Me-THF για χαμηλές θερμοκρασίες αλλά και με Φασματοσκοπία Μαγνητικού Πυρηνικού Συντονισμού (Nuclear Magnetic Resonance – NMR) σε διαλύτη CDCl3. Συντέθηκαν λοιπόν οκτώ διαφορετικά BODIPYs, τα οποία εμφάνισαν όλα παρόμοιες φωτοφυσικές ιδιότητες, ανάλογες της κατηγορίας τους, με πολύ υψηλές κβαντικές φωτονικές αποδόσεις. Τις ίδιες κβαντικές αποδόσεις εμφάνισαν ακόμη και εκείνα τα BODIPYs που φέρουν ιώδιο (4), λευκόχρυσο (6) ή και τα δύο (5) – άτομα που ως γνωστόν αποσβένουν με διάφορους τρόπους την εκπομπή των χρωμοφόρων από την τοπική διεγερμένη κατάσταση – με την επιτυχημένη αποκοπή τους από το συζυγιακό σύστημα της χρωμοφόρας. Επίσης για το BODIPY 5 επιλύθηκε η κρυσταλλική του δομή.Έπειτα μελετήθηκαν τα αυτοσυναρμολογημένα σύμπλοκα (9-12) με όλες τις παραπάνω τεχνικές και αποδείχθηκε ότι η αυτοσυναρμολόγησή τους με οργανομεταλλικές ενώσεις του λευκοχρύσου (9, 12) ή ενώσεις που φέρουν ομάδα πυριδίνης (11) δεν επιφέρουν καμία αλλαγή στις φασματοσκοπικές τους ιδιότητες. Η «έξυπνη» τοπολογία σύνθεσης των φθορίζουσων συνιστωσών επιβεβαιώθηκε όταν το σύμπολοκο 10, για το οποίο χρησιμοποιήθηκε το BODIPY 2 δεν διατήρησε τις φωτοφυσικές ιδιότητες του 2 – και αυτό γιατί στο 2 η ομάδα της πυριδίνης με την οποία αλληλεπιδρά το BODIPY με το κέντρο λευκοχρύσου της οργανομεταλλικής ένωσης αποτελεί μέρος του συζυγιακού συστήματος της χρωμοφόρας. Τα σύμπλοκα 9 και 12 είναι παρόμοια, διαφέρουν μόνο στην ομάδα που βρίσκεται στο BODIPY στη μέσο- θέση (ένα μεθύλιο στο BODIPY 3 και στο σύμπλοκο 9 και μία τεταρτοταγής μεθυλο-φαινυλομάδα στο BODIPY 8 και στο σύμπλοκο 12). Στο σύμπλοκο 12 έγιναν και μετρήσεις ηλεκτροφωταύγειας οι οποίες παρ’ όλο που δεν έχουν δώσει υψηλές αποδόσεις, υποδεικνύουν ξεκάθαρα ότι η ιδέα της κυκλικής συναρμολόγησης φωτονικών μονάδων είναι ελπιδοφόρα. Στο σύμπλοκο 11 παρουσιάζεται ένας δέκτης συγκομιδής φωτός ~1200 που - σε συνδυασμό με την 1800 4,4’-διπυριδίνη δότη - μπορεί να παρασκευάσει ένα ισχυρά φθορίζον συγκρότημα χρωμοφόρων [6+6], στο οποίο οι χρωμοφορικές συνιστώσες υπόκεινται σε ακριβή τοπολογικό έλεγχο.Τέλος έγινε προσπάθεια δημιουργίας συμπλόκων εγκλεισμού με γνώμονα τις ηλεκτροστατικές αλληλεπιδράσεις χρησιμοποιώντας το σύμπλοκο 12 με μονάδες πυρενίου που φέρουν ανιονικές σουλφονομάδες, οι οποίες εμφανίζουν εξαιρετική συγγένεια με τα κατιοντικά κέντρα λευκοχρύσου του 12. Η μελέτη καταγράφηκε σε διαλύτη DMF και DMF-d7, εφ’ όσον μόνο σε αυτό τον διαλύτη τα σύμπλοκα διατηρούνται διαλυτά. Τα αποτελέσματα υποδεικνύουν επιτυχή εγκλεισμό των μονάδων πυρενίου ανάμεσα σε δύο σύμπλοκα του 12, και ικανοποιητική μεταφορά ενέργειας μεταξύ τους.
περισσότερα
Περίληψη σε άλλη γλώσσα
The aim of this thesis is building "smart" connection topologies between dyes to create photonic cages which eliminate the luminescence quenching from the local emissive states. The following chapters provide the effort through which it was possible to reveal the connection path through coordination driven interactions, which is the basis for creating three-dimensional rigid superstructures with nearly perfect fluorescence quantum yields.The molecules used to achieve the above objectives are the fluorescent dyes with the common name BODIPYs (Boron Dippyromethene). The BODIPYs are symmetrical, conjugated, aromatic systems consisting of a six-membered and two five-membered rings and the group-BF2. They collect some striking and attractive photophysical properties while providing synthetic flexibility because of their susceptibility to multiple substitutions. In this thesis the synthesis, characterization and study of various BODIPYs is described, and the development, characterization and ...
The aim of this thesis is building "smart" connection topologies between dyes to create photonic cages which eliminate the luminescence quenching from the local emissive states. The following chapters provide the effort through which it was possible to reveal the connection path through coordination driven interactions, which is the basis for creating three-dimensional rigid superstructures with nearly perfect fluorescence quantum yields.The molecules used to achieve the above objectives are the fluorescent dyes with the common name BODIPYs (Boron Dippyromethene). The BODIPYs are symmetrical, conjugated, aromatic systems consisting of a six-membered and two five-membered rings and the group-BF2. They collect some striking and attractive photophysical properties while providing synthetic flexibility because of their susceptibility to multiple substitutions. In this thesis the synthesis, characterization and study of various BODIPYs is described, and the development, characterization and study of photophysical properties of nanostructures consisting of BODIPYs and organometallic compounds of platinum (Pt), through the technique of self-assembly.At first, there has been made an extensive spectroscopic analysis of the BODIPYs using UV-Visible Spectroscopy, Steady State Fluorescence Spectroscopy and Time-Resolved Emission Spectroscopy - TRES, and solvent CHCl3 and 2Me-THF for low temperatures and also using Nuclear Magnetic Resonance Spectroscopy NMR in CDCl3. Eight different BODIPYs were synthesized, and all of them revealed similar photophysical properties, with very high fluorescence quantum yields. The same quantum yields are exhibited even from those BODIPYs bearing iodine (4), platinum (6) or both (5) - atoms known as quenchers of the local emissive state –due to their successful cleavage from the conjugated system of the dye. BODIPY 5 gave suitable crystals for X-ray analysis so that crystal structure is solved.Then the self-assembled complexes were studied (9-12) using all the above techniques and demonstrated that self-assembly of several BODIPYs with organometallic compounds of platinum (9, 12) or compounds bearing pyridine group (11) do not change in spectroscopic properties. This is a fact due to the "smart" topology synthesis of the fluorescent components and that was confirmed when complex 10, for which the BODIPY 2 was used, did not maintain the photophysical properties of 2 - and that is because the pyridine group which interacts with the platinum center of the organometallic compound is actually part of the conjugated system of the dye. The complex 9 and 12 are similar, they only differ in the group at the meso-position of the BODIPY (a methyl group on BODIPY 3 and complex 9 and a tert-butyl-phenyl group on BODIPY 8 and complex 12). At complex 12 electroluminescence measurements were also carried out, which although did not give high yields, the results clearly show that the concept of assembling cyclically photonic units appears to be promising. Complex 11 presents a tailor-made ~1200 light-harvesting acceptor which - when combined with the 1800 4,4’- bipyridine donor - can form a brightly fluorescent [6+6] assembly in which the chromophoric building blocks are subjected to precise topological control.Finally host-guest encapsulation is attempted driven by electrostatic interactions using the complex 12 with units of pyrene bearing anionic sulfate groups which exhibit excellent affinity to the cationic platinum centers of 12. The study was carried in DMF and DMF-d7, as it was the only solvent where the complexes reserved soluble. The results indicate successful encapsulation of a pyrene unit between two complexes of 12 and efficient energy transfer among the dyes.
περισσότερα